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Abstract

Three-dimensional real-life simulations are generally unsteady and involve moving geometries. Industry is currently very far
from performing such body-fitted simulations on a daily basis, mainly due to the robustness of the moving mesh algorithm and
their extensive computational cost. A moving mesh algorithm coupled to local mesh optimizations has proved its efficiency in
dealing with large deformation of the mesh without re-meshing. In this paper, the coupling of this algorithm with two mesh
deformation techniques is studied: an elasticity PDE-based one and an explicit Inverse Distance Weighted interpolation one, and
both techniques are compared. The efficiency of this method is demonstrated on challenging test cases, involving large body
deformations, boundary layers and large displacements with shearing. Finally, the moving mesh algorithm is coupled to a CFD
flow solver.
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1. Introduction

The growing expectations of the industrial world for simulations involving moving geometries have given a boost to
this research field for the last decades. Moving mesh simulations are currently used in many research fields: ballistics,
biomedical, aeronautics, transports... These simulations combine the difficulties associated with unsteadiness, mesh
movement and fluid-structure or structure-structure coupling, and are generally hard to perform and very costly in
terms of CPU time.

Three leading methodologies have been designed in the literature to handle geometry displacements during numer-
ical simulations: body-fitted approach [6,7,10,17,23], Chimera methods [8,9,21] and immersed/embedded boundary
methods [18,22]. Each of them has its own strengths and weaknesses. In this work, we consider the first class of
methods where the time-evolving computational domain is treated with a body-fitted approach, which means that the
computational mesh follows time-evolving geometries in their movement. Only simplicial unstructured meshes are
considered mainly because several fully-automatic software packages are available to generate such meshes [16,20].
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Another reason is that our final objective is to use highly anisotropic metric-based mesh adaptation [2,3] on moving
mesh simulations, and simplicial elements still remain the most flexible to handle this technology.

Unfortunately, the fixed-connectivity constraint imposed by the classical flow solver numerical scheme Arbitrary-
Lagrangian-Eulerian (ALE) framework considerably limits the efficiency of body-fitted moving mesh techniques. If
the problem induces large displacements of the geometry, the mesh distortion can adversely affect the accuracy and
stability of the numerical schemes and often make the ALE approach unpractical.

Two different methods have been proposed to handle large displacements moving mesh simulations. The first
one consists of moving the mesh as much as possible, keeping the connectivity fixed, and solving the equations in a
fully ALE manner, until the mesh becomes too bad and a global or local remeshing is performed, the solution being
interpolated on the new mesh, see for instance [7]. In the case of displacements with large shearing, a large number
of remeshing is performed, which is prohibitive in terms of CPU time. The second approach aims at maintaining the
best possible mesh quality while moving using several local mesh optimizations such as vertex addition or collapsing
and connectivity changes [10,13]. This strategy is extremely robust and maintains a good mesh quality throughout
the simulation, but involves a large number of solution interpolations after each mesh modification, and the numerical
method does not fully comply with the ALE framework.

A new approach for moving mesh simulations has been proposed in [1], which is compatible with the ALE frame-
work and able to handle anisotropic adapted meshes. First, the number of solutions required for mesh deformation –
achieved through an elasticity-based PDE method– is significantly reduced. Second, the mesh deformation algorithm
is coupled with local mesh quality optimizations[12,15] using only vertex smoothing and edge/face swapping. This
mesh-connectivity-change operator is especially powerful in handling shear and large deformation movement, since
no re-meshing is required.

In this paper, further demonstration of the robustness of this algorithm is provided: we propose to use an explicit
interpolation method to compute the mesh deformation, and compare this method to the elasticity-based one on new
challenging cases. Finally, this algorithm is successfully coupled to a three-dimensional CFD ALE solver.

This paper begins with a reminder of the changing-connectivity moving mesh algorithm. The two methods used to
compute the mesh deformation are then described and compared on some challenging examples. The paper ends with
CFD applications, where an ALE solver has been coupled to the moving mesh method.

2. Mesh-connectivity-change moving mesh strategy

The strategy developed to move the inner mesh following the moving boundaries involves two main parts. First,
the computation of the mesh deformation: inner vertices are assigned a trajectory, and thus a position for future time
steps. Second, the optimization of the mesh, in which the positions computed in the mesh deformation phase are
corrected and connectivity changes are performed to ensure a good mesh quality. This strategy has proven to be very
powerful [1]: large displacement of complex geometries can be performed preserving a good mesh quality without
any remeshing. Note that, in the scope of this paper, the surface meshes are not optimized (the surface vertices are not
moved on the surface).

2.1. Mesh deformation phase

During the first phase of the algorithm, the displacement of all volume vertices, i.e., the mesh deformation, is
computed. To this end, two methods are considered in this paper: an elasticity-based PDE method or an explicit
Inverse Distance Weighted (IDW) interpolation method. Both will be discussed more in depth in Section 3. In either
cases, the cost of the mesh deformation solutions can be reduced by: (i) using a dedicated coarser mesh to compute
the mesh deformation (ii) rigidifying some regions around tiny complex details of the geometries.

2.2. Improving mesh deformation algorithm efficiency

Mesh deformation algorithms, are known to be an expensive part of dynamic mesh simulations, as their solution is
generally required at each solver time step (or each few solver time steps). To reduce the number of such solutions, we
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propose to solve the mesh deformation problem for a large time frame of length ∆t instead of doing it at each solver
time step δt. While there is a risk of a less effective mesh displacement solution, it is a worthwhile strategy if our
methodology is able to preserve the mesh quality along large displacements. Solving the mesh deformation problem
once for large time frame is problematic in the case of curved or accelerated trajectories of the bodies. To enhance the
mesh deformation prescription, accelerated-velocity curved, i.e., high-order, vertex trajectories are computed.

The paths of inner vertices can be improved by providing a constant acceleration a to each vertex, which results in
an accelerated and curved trajectory. During time frame [t, t +∆t], the position and the velocity of a vertex are updated
as follow:

x(t + δt) = x(t) + δt v(t) +
δt2

2
a and v(t + δt) = v(t) + δt a .

Prescribing a velocity and an acceleration vectors to each vertex requires solving two mesh deformation problems. If
inner vertex displacement is sought for time frame [t, t + ∆t], boundary conditions are imposed by the location of the
body at time t + ∆t/2 and t + ∆t. These locations are computed using body velocity and acceleration. Now, to define
the trajectory of each vertex, the velocity and acceleration are deduced from evaluated middle and final positions:

∆t v(t) = −3 x(t) + 4 x(t + ∆t/2) − x(t + ∆t)
∆t2

2
a = 2 x(t) − 4 x(t + ∆t/2) + 2x(t + ∆t) .

In this context, it is mandatory to certify that the mesh motion remains valid for the whole time frame [t, t + ∆t],
which is done computing the sign of the volumes of the elements all along their path [1].

2.3. Local mesh optimization

It has been proposed [1] to couple mesh deformation with local mesh optimization using smoothing and generalized
swapping to achieve efficiently large displacement in moving mesh applications. Connectivity changes are really
effective in handling shear and removing highly skewed elements. Here, we briefly recall the mesh optimization
procedure in the generalized context of metric-based mesh adaptive optimization.

For 3D adapted meshes, an element’s quality is measured in terms of element’s shape by the quality function:

QM(K) =

√
3

216

( 6∑
i=1
`2
M

(ei)
) 3

2

|K|M
∈ [1, +∞] , (1)

where `M(e) and |K|M are edge length and element volume in metric M. Metric M is a 3 × 3 symmetric positive
definite tensor prescribing element sizes, anisotropy and orientations to the mesh generator. QM(K) = 1 corresponds
to a perfectly regular element and QM(K) < 2 correspond to excellent quality elements, while a high value of QM(K)
indicates a nearly degenerated element. For non-adapted meshes, the identity matrix I3 is chosen as metric tensor.

The first mesh optimization tool is vertex smoothing which consists of relocating each vertex inside its ball of
elements, i.e., the set of elements having Pi as vertex. For each tetrahedron K j of the ball of Pi, a new optimal position
Popt

j for Pi can be proposed to form a regular tetrahedron in metric space. The final optimal position Popt
i is computed

as a weighted average of all these optimal positions. This way, an element of the ball is all the more dominant if its
quality in the original mesh is bad.

The second mesh optimization tool to improve mesh quality is generalized swapping/local-reconnection. Let α and
β be the tetrahedra’s vertices opposite to the common face P1P2P3. Face swapping consists of suppressing this face
and creating the edge e = αβ. In this case, the two original tetrahedra are deleted and three new tetrahedra are created.
A generalization of this operation exists and consists in reconnecting the inside of shells of tetrahedra [1,12,15]. The
different edge swaps are generally denoted n→ m where m is the number of new tetrahedra. In this work, edge swaps
3→ 2, 4→ 4, 5→ 6, 6→ 8 and 7→ 10 have been implemented.

2.4. Moving mesh algorithm

The changing-connectivity moving mesh algorithm (MMA) is described in Algorithm 1, where the different phases
described above are put together.
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Algorithm 1 Changing-Connectivity Moving Mesh Algorithm
While (t < T end)

1. Solve mesh deformation: compute vertices trajectories

(a)
{
dbody
|∂Ωh

(t + ∆t
2 )

}
= Compute body vertex displacement from current translation speed vbody, rotation speed

θbody and acceleration abody for [t, t + ∆t
2 ]

d(t + ∆t
2 ) = Solve mesh deformation problem

(
dbody
|∂Ωh

(t + ∆t
2 ), ∆t

2
)

(b)
{
dbody
|∂Ωh

(t + ∆t)
}

= Compute body vertex displacement from current translation speed vbody, rotation speed
θbody and acceleration abody for [t, t + ∆t]
d(t + ∆t) = Solve mesh deformation problem

(
dbody
|∂Ωh

(t + ∆t), ∆t
)

(c) {v, a} = Deduce inner vertex speed and acceleration from both displacements
{
d(t + ∆t

2 ),d(t + ∆t)
}

(d) If predicted mesh motion is invalid then ∆t = ∆t/2n and goto 1.
Else T els = t + ∆t

2. Moving mesh stage with mesh optimizations
While (t < T els)

(a) δt = Get moving mesh time step
(
Hk, v, CFLgeom

)
(b) Hk = Swaps optimization

(
Hk,Qswap

target

)
(c) vopt = Vertices smoothing

(
Hk,Qsmoothing

target , Qmax

)
(d) Hk+1 = Move the mesh and update vertices speed

(
Hk, δt, v, vopt, a

)
(e) Check mesh quality: stop if too distorted.
(f) t = t + δt

EndWhile

EndWhile

In this algorithm, two time steps appear: a large one ∆t for the mesh deformation computation, and a smaller
one δtopt corresponding to the steps where the mesh is optimized. The first one is set manually at the beginning
of the computation, but can be automatically reduced if the mesh quality degrades. The second one is computed
automatically, using the CFLgeom parameter as described below.

A good restriction to be imposed on the mesh movement is that vertices cannot cross too many elements on a
single move between two mesh optimizations. Therefore, a geometric parameter CFLgeom is introduced to control the
number of stages used to perform the mesh displacement between t and t + ∆t. If CFLgeom is greater than one, the
mesh is authorized to cross more than one element in a single move. The moving geometric time step is given by:

δt = CFLgeom max
Pi

h(xi)
v(xi)

, (2)

where h(xi) is the smallest altitude of all the elements in the ball of vertex Pi, and v(xi) its velocity.
After each mesh deformation solution, the quality of the mesh in the future is analyzed: if the quality is too low,

the mesh deformation problem is solved again with a smaller time step.

3. Comparison of two mesh deformation methods

3.1. Elasticity-based PDE

The first method to compute the displacement of all vertices, i.e., the mesh deformation, is a PDE-based method
using a linear-elasticity analogy [1,4].More precisely, the inner vertices movement is obtained by solving an elasticity-
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like equation with a P1 Finite Element Method (FEM):

div(σ(E)) = 0 , with E =
∇d + T∇d

2
, (3)

where σ and E are respectively the Cauchy stress and strain tensors, and d is the Lagrangian displacement of the
vertices. The Cauchy stress tensor follows Hooke’s law for isotropic homogeneous medium , where ν is the Poisson
ratio, E the Young modulus of the material and λ, µ are the Lamé coefficients:

σ(E) = λ trace(E)Id + 2 µE or E(σ) =
1 + ν

E
σ −

ν

E
trace(σ)Id .

In our context, ν is typically chosen of the order of 0.48. This corresponds to a very soft, nearly incompressible
material. Actually, this value for ν corresponds to a nearly ill-posed problem. Note that the closer ν is to 0.5, the
harder it is to converge the Finite-Element linear system. The chosen value appears to be a good trade-off between
material softness and the preservation of the iterative linear system solving algorithm efficiency. The FEM system is
then solved by a Conjugate Gradient algorithm coupled with an LU-SGS pre-conditioner.

Two kinds of boundary conditions are considered. Dirichlet conditions are used to enforce strongly the displace-
ment of the vertices located on moving boundaries. They are also used for fixed boundaries far from the moving
bodies. These Dirichlet conditions can be relaxed if we want some vertices to move on a specific plane, typically on
faces of a surrounding box close to the moving bodies, or even intersecting one (in the case of symmetry planes). In
that case, if the plane is orthogonal to an axis of the Cartesian frame, only the displacement along this axis is enforced
as a Dirichlet condition. The displacement in the two other directions are considered as degrees of freedom and is
added in the FEM matrix as for normal volume points.

An advantage of elasticity-based methods is the opportunity they offer to adapt the local material properties of the
mesh, especially its stiffness, according to the distortion and efforts born by each element: the way the Jacobian of
the transformation from the reference element to the current element is accounted for in the FEM matrix assembly is
modified. The classical P1 FEM formulation of the linear elasticity matrix leads to the evaluation of quantities of the
form: ∫

K
s
∂ϕJ

∂xk

∂ϕI

∂xl
dx = s |K|

∂ϕJ

∂xk

∂ϕI

∂xl
,

where s is either λ, µ or λ + 2µ and |K| is the volume of tetrahedron K. The above quantity is replaced by:∫
K

s
(
|K̂|
|K|

)χ
∂ϕJ

∂xk

∂ϕI

∂xl
dx = s |K|

(
|K̂|
|K|

)χ
∂ϕJ

∂xk

∂ϕI

∂xl
,

where χ > 0 is the stiffening power and K̂ is the reference element. This technique locally multiplies λ and µ by a
factor proportional to |K|−χ. χ determines how stiffer than large elements small elements are. In this work, we chose
χ = 1.

The main drawback of this method is that it is difficult to parallelize efficiently because of the pre-conditioner.
Moreover, the system can be slow to converge if the system is too stiff.

3.2. Inverse Weighted Distance method

An alternative approach to computing the displacement of the volume vertices is by means of an interpolation
approach. In the interpolation approach the displacement is defined by an algebraic interpolation function which pro-
vides a smooth function to blend displacements between boundary surfaces. Algebraic methods may either utilize
implicit formulations such as those used in the popular Radial Basis Function (RBF) interpolation method [11], or
explicit formulations such as transfinite interpolation [14] used for structured mesh generation. Generally explicit in-
terpolation functions have performance advantages since they avoid problems associated with solving large stiff linear
systems, however care must be taken to design interpolation functions that can sustain large deformations without in-
troducing folded volume cells. For this evaluation we use the robust and fast explicit deformation method [19] that is
an algebraic technique that utilizes a reciprocal distance weighted sum of deformation functions to interpolate defor-
mations to the volume vertices. In this algebraic deformation method it is assumed that every vertex of the boundary
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surfaces have a displacement field that can be approximated by a rigid body motion (displacement plus rotation about
the node). This rigid body motion is computed from the displacements of neighbor vertices by solving a least squares
problem fitting a quaternion to the relative displacements of neighboring vertices. The nodal displacement field in the
neighborhood of vertex i can then be represented by the function denoted ~si(~r), that is written as

~si(~r) = Mi~r + ~bi − ~r, (4)

where Mi is a rotation matrix, ~bi is a displacement vector associated with the ith node, and ~r is a coordinate vector
in the original mesh. The displacement field in the volume mesh is then described through a weighted average of all
boundary node displacement fields as given by

~s(~r) =

∑
wi(~r)~si(~r)∑

wi(~r)
. (5)

The weighting function used to blend these displacements is based on a two-term inverse distance weighting function
that is designed to preserve near-boundary mesh orthogonality while providing a smooth transition to blend between
more distant surfaces. The nodal weight employed is defined by the function

wi(~r) = Ai ∗

( Lde f

||~r − ~ri||

)a

+

(
αLde f

||~r − ~ri||

)b , (6)

where ~ri is the position of point i, Ai is the area weight assigned to node i, Lde f is an estimated length of the deformation
region, α is an estimated fraction of Lde f that is reserved for stiffer near body deformation, and a and b are user-defined
exponents where a controls the smooth blending of deformations between surfaces while b controls the more stiff
deformation close to deforming surfaces. Numerical experimentation suggests that a = 3 and b = 5 provide the best-
quality for three-dimensional cases. The α parameter can be a fixed parameter or it can be dynamically computed
based on the amount of deformation in the problem. Further details are described in a recent paper [19] and not
discussed here.

Note, a naive implementation of the algorithm directly from Equation (5) will result in an O(n2) algorithm that
will be too slow for practical applications. However, the localization provided by the reciprocal weights provides
a mechanism for approximating the contributions of more distant points. Therefore the displacement function can
be evaluated with a suitable tolerance utilizing a fast O(n log n) tree-code based algorithm that approximates the
contributions of collections of distant surface nodes using a multi-pole expansion technique (as described in detail
in [19]). When the algorithm is optimized using these techniques it can be very fast and highly parallelizable.

This algorithm has the advantage that it can be applied to meshes with arbitrary connectivity including adapted
meshes with hanging nodes without difficulty. It is able to handle highly anisotropic mesh elements near viscous
walls without difficulty and is free of numerical stiffness issues that can degrade the robustness of implicit methods
for mapping deformations. However, since it is a global method that is based on surface mesh deformations only, it
lacks an ability to dynamically adapt deformation to mesh conditions. For example, it is unable to adjust deformations
locally to adapt to local mesh resolution requirements as can be easily accomplished with adjustments to element
stiffness in PDE-based method.

3.3. Numerical Examples

We now study on challenging numerical examples how those two mesh deformation methods behave when used in
the changing-connectivity moving mesh algorithm. The next examples are purely moving mesh simulations and we
will focus our analysis on mesh quality criteria. In particular, we show that the MMA applies successfully to rigid
body with large shearing and deformable bodies and we give an insight into a strategy to move boundary layers on
deformable bodies.

3.3.1. Interpenetrating cylinders
The first example example is a challenging academic test case with rigid bodies, and has been presented in [1]. Two

cylinders interpenetrate each other and there is only one layer of elements between both cylinders, i.e. internal edges
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Table 1. Interpenetrating cylinders test case. Total number of mesh deformation solutions and mesh quality optimization steps to achieve the
displacement, final mesh statistics and total number of swaps with the changing-connectivity MMA.

# mesh deform. # mesh optim. Qmean
end 1 < Qend < 2 Qworst

overall # swaps

Elasticity 50 429 1.5 97.1% 79 852, 514
IDW 50 570 1.4 98.2% 30 1, 408, 680

connect both cylinders. The geometry of the domain is shown in Figure 1. To make this test case more complicated,
we add rotation to the top cylinder:

θtop = (0, 0, 5) , vtop = (0, 0,−0.1) and θbottom = (0, 0, 0) , vbottom = (0, 0, 0.1) .

The initial mesh is composed of 34 567 vertices and 188 847 tetrahedra.
A shear layer appears between the two cylinders, that is only one element wide. Therefore, the swapping optimiza-

tion has just a little of freedom to act. Moreover, it is obvious that too large ∆t will lead to an invalid mesh: such a
simulation requires a relatively large number of mesh deformation solutions. For both mesh deformation methods, 50
mesh deformation steps are set, i.e. ∆t = 1, and we set CFLgeom = 2.

The changing-connectivity MMA proves to be extremely robust in both cases, keeping the mesh worst element
quality below 100 and ensuring a final excellent mean quality of 1.5 . Because of the shear, a large number of swaps
(around 1 million) have been performed. For that test case, results with both mesh deformation methods are very
similar. Moreover, Figure 1 (center) points out a major difference between elasticity and IDW: elasticity creates
rotational displacements in the mesh above and under the cylinder, that push vertices in front, attract vertices behind
the moving inner cylinder, and thus move vertices to empty areas instead of crushing them, while the IDW method
tends to produce straighter displacements. Table 1 provides a comparison of the MMA with the two mesh deformation
methods.

3.3.2. Squeezing can
The next test case deals with deformable geometries. It represents a can which is squeezed. The can is a cylinder

of length 5 units and diameter 2 units inside a spherical domain of radius 10 units. The can is centered at the origin
and is aligned along the z-axis. The simulation runs up to T end = 1 and the temporal deformation function is given by:

if |z(0)| < 2 then x(t) =


x(t) = x(0)
y(t) =

(
α + (1 − α)(1 − t2)

)
y(0)

z(t) = z(0)
with α =

1
2.2

(
1.2 − cos

(
π

2
|z(0)|

))
.

The can deformation is shown in Figure 2. For this case, the moving mesh simulation is done for the inside mesh of
the can geometry. The mesh is composed of 7 018 vertices and 36 407 tetrahedra. Four mesh deformation steps are
initially prescribed, and CFLgeom is fixed to 1. Statistics for the case are given in Table 2.

The mesh is successfully moved,as shown on Figure 2. We clearly see that the elasticity methods has moved
vertices away from the squeezed region while keeping an excellent mesh quality, whereas the IDW tends to let them
crush. For this case, the swap optimization are essential to preserve the quality of the mesh all along the movement.

3.3.3. Bending beam
This test case has been proposed in [19]. It is a general deformation test on a three-dimensional bending beam.

The beam is 8 units long, 2 units wide and 0.1 unit thick inside a spherical domain of radius 25 units. The beam is
deformed such that the beam center-line is mapped onto a circular arc:

x(t) =


x(t) = (R − z(0)) sin(θ)
y(t) = y(0)
z(t) = z(0) + (R − z(0))(1 − cos(θ))

with θ =
x(0)
R

and R = Rmin + (Rmax − Rmin)
e−κt − e−κ

1 − e−κ
.
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Fig. 1. Interpenetrating cylinders test case. Evolution of the mesh with the elasticity-based (top) and IDW (bottom) mesh deformation methods.
Between the initial (left) and final (right) meshes, the displacements given by the mesh deformation steps at times 12, 18 and 25 is shown.

Table 2. Squeezing can test case. Total number of mesh deformation solutions and mesh quality optimization steps to achieve the displacement,
final mesh statistics and total number of swaps with the changing-connectivity MMA.

# mesh deform. # mesh optim. Qmean
end 1 < Qend < 2 Qworst

overall # swaps

Elasticity (in.) 6 27 1.5 93.0% 11 16.255
IDW (in.) 4 27 1.48 92.5% 11 11, 940

Fig. 2. Squeezing can test cases. From left to right: initial mesh, displacement given by the elasticity-based and IDW mesh deformation problems
at times 0.75, and final meshes with elasticity and IDW.
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where Rmin and Rmax are the radii of curvature at t = 0 and t = 1, respectively. κ is a parameter that controls how
rapidly the radius and center of curvature move from the initial to final values. For this test case, Rmin = 2, Rmax = 500
and κ = 10. The initial mesh is composed of 58 315 vertices and 322 971 tetrahedra. We set ∆t = 0.2 and CFLgeom = 1.

Again, this large deformation problem is solved without any difficulty, requiring only a few mesh deformation
steps, the final mesh is excellent as shown in Table 3 and no skewed element appears inside the mesh. There again, we
can see in Figure 3 that the elasticity-based method tends to move points farther from the body than the IDW method,
thus requiring significantly more swaps. However, the performances of the elasticity-based and IDW methods are
very close, cf. Table 3.

Table 3. Bending beam test case. Total number of mesh deformation solutions and mesh quality optimization steps to achieve the displacement,
final mesh statistics and total number of swaps with the changing-connectivity MMA.

# mesh deform. # mesh optim. Qmean
end 1 < Qend < 2 Qworst

overall # swaps

Elasticity 5 211 1.3 99.9% 4.4 479, 182
IDW 4 40 1.3 99.8% 5.9 149, 536

Fig. 3. Bending beam test case. From left to right: initial mesh, displacement given by the elasticity-based and IDW mesh deformation problems
at time 0.8, and final meshes with elasticity and IDW.

3.3.4. Boundary layers on deformable geometries
Dealing with boundary layers (BL) meshes for rigid bodies is rather easy: the whole mesh layers are rigidified and

moved together with the body. However, it is a lot more difficult with deformable bodies, since the mesh structured
layers must both follow the deformation of the body and keep their structure. It was a priori not certain that the
movement provided by the elasticity or IDW step would be precise enough to keep that structure. In the sequel we
demonstrate that both methods can move one thick layer with a good accuracy, and that such layers can also be moved
correctly with the elasticity method.

One boundary layer. For this case, we consider the bending beam studied previously, to which we add one thin
structured mesh layer of height a quarter of the height of the beam, see Figure 4. The movement of the beam is the
same and no swap or smoothing optimizations are done in the BL. At the end of the simulation, we observe that the
structured aspect of the BL has been well preserved. In Table 4, we gather quality indicators depending on different
moving mesh parameters. We consider the variation of the distance of the layer vertices to the body, that is expected
to remain constant in ideal cases. We can see that taking acceleration into account in the trajectories is very important:
indeed, as the movement of the beam is accelerated, the layer under the beam tends to thicken while the layer above
it tends to be crushed. We can also see that less IDW steps are required to reach an equivalent mean quality, but the
maximal distance variation is less good.

This result is very promising, because the structured aspect of the BL mesh is well preserved. This lets us consider
a clever strategy to move BL meshes with deformable geometries.
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Table 4. Bending beam with one BL. Mean and maximal relative distance variations δdx, in the case of 10 elasticity solutions, 50 elasticity solutions
with linear (lin.) trajectories (without taking acceleration into account), 50 elasticity solutions with quadratic (quad.) trajectories.

10 elast. quad. 50 elast. lin. 50 elast. quad. 10 IDW quad.

Mean relative δdx (in %) 27 9.9 5.7 6.4
Max relative δdx (in %) 143 66 19 60

(a) (c) (e)

(b) (d) (f)

Fig. 4. One BL test case. Initial mesh (a) and close up on the BL (b), final mesh with elasticity (c) and IDW (d), and close-ups on the final BL
meshes with elasticity (e) and IDW (f).

Several boundary layers. The elasticity mesh deformation method is also actually capable of moving several thinner
BL, provided the mesh deformation time step is small enough to handle the displacement of the smallest elements
against the body. The simulation was run with a boundary layer containing 10 thin layers (the smallest height is
0.0017 units): the structure inside the layer is still well preserved all along the movement, and the quality of the layer
looks good even at the end of the deformation of the beam. Close-ups on the BL meshes are show in Figure 5. We
were not able to move these layers with the IDW mesh deformation, which needs to be further investigated.

4. Moving-mesh ALE computations

The changing-connectivity moving mesh algorithm described above is coupled to our in-house flow solver to run
CFD simulations with moving geometries. The compressible Euler equations are solved with a Finite Volume method.
The displacements of the vertices require the use of the ALE formulation of these equations. As regards the temporal
accuracy, the considered SSPRK schemes are based on the strict application of the Discrete Geometrical Conservation
Law (DGCL). Details about the ALE solver are given in [5]. The absence of remeshing preserves the quality of the
solution, as it is free of most interpolation errors due to solutions transfers from one mesh to another.

The flow solver is integrated to Algorithm 1 as follows. The solver iterations are embedded in the optimization
phase, so that the mesh is moved after each solver iteration, but optimizations are performed only when the optimiza-
tion time (defined by the CFLgeom parameter) is reached. If necessary, the solver time step is truncated to perform
optimizations at the correct time.

The efficiency of the method is demonstrated on two examples involving complex moving geometries. Both simu-
lations were run using the IDW interpolation and the elasticity-based mesh deformation methods.
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Fig. 5. Ten BL test case. Initial mesh (left) and close-ups on the final BL mesh (right), with the elasticity-based mesh deformation method.

4.1. Vortical wake of a F117 aircraft nosing up

The second example is a subsonic F117 aircraft nosing up, that creates a vortical wake. An inflow of air at Mach
0.4 arrives in front of the aircraft, initially in horizontal position that noses up, stays up for a while, then noses down.
In this example, the aicraft rotates around its center of gravity. Let T = 1s be the characteristic time of the movement
and θmax = 20o the maximal angle reached, the movement is defined by its angle of rotation, of which the evolution
is divided in 7 phases. Phase (i) (0 ≤ t ≤ T/2) is an initialization phase, during which the flow around the aircraft
is established. Phase (ii) ( T

2 < t ≤ T ) and (iii) (T < t ≤ 3T
2 ) are respectively phases of accelerated and decelerated

ascension. Vortices start to grow behind the aircraft, and they expand during phase (iv) ( 3T
2 < t ≤ 7T

2 ), where the
aircraft stays in upward position. Phase (v) ( 7T

2 < t ≤ 4T ) and (vi) (4T < t ≤ 9T
2 ) are phases of accelerated and

decelerated descent, the vortices start to move away and they slowly disappear in phase (vii) ( 9T
2 t ≤ 5T ). Wall

conditions are imposed on the faces of the surrounding box and slipping conditions on the aircraft.
The initial mesh has 501, 859 vertices and 3, 012, 099 tetrahedra. The mesh used and snapshots of the solutions are

shown in Figures 6 and 7. A difficulty of this test case is the uneven movement of the aircraft, with strong acceleration
and deceleration during the phases of ascension and descent, and the inversion of the acceleration in the middle of
these phases. It is necessary to solve enough mesh deformation problems to avoid that the body boundaries cross
small elements close to it. Statistics of the moving mesh characteristics are show in Table 5. We can see that the two
proposed mesh deformation methods produce rather similar results in terms of mesh quality, but the case requires only
half as many mesh deformation steps if the IDW method is used.

Table 5. Nosing up F117 test case. Total number of mesh deformation solutions and mesh quality optimization steps to achieve the displacement,
final mesh statistics and total number of swaps with the changing-connectivity MMA.

# mesh deform. # mesh optim. Qmean
end 1 < Qend < 2 Qworst

overall # swaps

Elasticity 24 66 1.4 99.8% 19 698 755
IDW 12 37 1.4 99.8% 19 713 247



12 N. Barral et al. / Procedia Engineering 00 (2014) 000–000

Fig. 6. Test case of the nosing up F117. semi-structured meshes in initial horizontal position, and upward position.

4.2. Two F117 aircraft flight paths crossing

The first example is modeling two F117 aircrafts having crossing flight paths. This problem illustrates the efficiency
of the connectivity-change moving mesh algorithm in handling large displacements of complex geometries without
any remeshing. When both aircrafts cross each other, the mesh deformation encounters a large shearing due to
the opposite flight directions. The connectivity-change mesh deformation algorithm handles easily this complex
displacement thanks to the mesh local reconnection. Therefore, the mesh quality remains very good during the whole
displacement.

As concerns the fluid simulation, the aircrafts are moved at a speed of Mach 0.8, in an initially inert uniform fluid:
at t = 0 the speed of the air is null everywhere. The rotation speed of the aircrafts is set to a tenth of their translation
speed. Transmitting boundary conditions are used on the sides of the surrounding box, and slipping conditions are
imposed on the two F117 bodies. After a phase of initialization, the flow is established when the two F117s pass each
other.

The initial mesh has 586, 610 vertices and 3, 420, 332 tetrahedra. Some statistics on the moving mesh aspect of
the simulation are shown in Table 6. We can see that both methods keep an excellent mesh quality all along the
simulation. We used the minimal number of mesh deformations possible, and the IDW method again requires half as
many mesh deformation steps, but then requires almost five times more swaps for the whole simulation. This is due
to the fact that with the elasticty-based approach, vertices tend to bypass the moving bodies, while their trajectories
are straighter with the IDW, thus creating a lot of shearing. In Figure 8, we show both the moving mesh aspect of the
simulation and the flow solution at different time steps.

Table 6. Two F117s test case. Total number of mesh deformation solutions and mesh quality optimization steps to achieve the displacement, final
mesh statistics and total number of swaps with the changing-connectivity MMA.

# mesh deform. # mesh optim. Qmean
end 1 < Qend < 2 Qworst

overall # swaps

Elasticity 43 1563 1.4 99.8% 27 2, 176, 850
IDW 22 1717 1.4 99.7% 26 10, 396, 127

5. Conclusion

In this paper, new numerical evidence has been given that 3D large displacements are possible with a mesh de-
formation algorithm coupled with mesh optimization using only swaps and vertex movements. No re-meshing is
required. The possibility to compute the mesh deformation using an explicit Inverse Distance Weighted interpolation
has been added to the algorithm. Moreover, we have been dealing with deformable geometries, and have started to
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address the issue of boundary layers. Finally, the moving mesh algorithm has been coupled to a CFD ALE flow solver.
Several examples, both purely moving-mesh and CFD, have been exhibited.

The comparison of the two mesh deformation methods shows that both are very robust coupled with mesh opti-
mizations. They both produce meshes of equivalent excellent qualities.It seems that in general, less IDW solutions are
necessary, but the elasticity-based approach requires significantly less swap in the cases with a lot of shearing. These
results need to be confirmed and refined on more cases, but they confirm the advantage of having both tools at our
disposal.

However some problematics remain. The moving of boundary layers need to be further developed. The imple-
mentation of the IDW method and the parallelization of the flow solver must be improved, in order to run CPU time
comparisons of both methods. Other issues are surface optimizations, simulations of deformable geometries with
possible connectivity changes and the efficient treatment of contact problems.
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[7] J.D. Baum, H. Luo, and R. Löhner. A new ALE adaptive unstructured methodology for the simulation of moving bodies. In 32th AIAA

Aerospace Sciences Meeting, AIAA Paper 1994-0414, Reno, NV, USA, Jan 1994.
[8] J.A. Benek, P.G. Buning, and J.L. Steger. A 3D chimera grid embedding technique. In 7th AIAA Computational Fluid Dynamics Conference,

AIAA Paper 1985-1523, Cincinnati, OH, USA, Jul 1985.
[9] F. Brezzi, J.L. Lions, and O. Pironneau. Analysis of a Chimera method. C.R. Acad. Sci. ParisSer. I, 332(7):655–660, 2001.

[10] G. Compere, J-F. Remacle, J. Jansson, and J. Hoffman. A mesh adaptation framework for dealing with large deforming meshes. Int. J. Numer.
Meth. Engng, 82(7):843–867, 2010.

[11] A. de Boer, M. van der Schoot, and H. Bijl. Mesh deformation based on radial basis function interpolation. Comput. & Struct., 85:784–795,
2007.

[12] E. Brière de l’Isle and P.L. George. Optimization of tetrahedral meshes. IMA Volumes in Mathematics and its Applications, 75:97–128, 1995.
[13] C. Dobrzynski and P.J. Frey. Anisotropic Delaunay mesh adaptation for unsteady simulations. In Proceedings of the 17th International Meshing

Roundtable, pages 177–194. Springer, 2008.
[14] L. E. Eriksson. Generation of boundary conforming grids around wing-body configurations using transfinite interpolation. AIAA Journal,

20:1313–1320, 1982.
[15] P.J. Frey and P.L. George. Mesh generation. Application to finite elements. ISTE Ltd and John Wiley & Sons, 2nd edition, 2008.
[16] P.L. George. Tet meshing: construction, optimization and adaptation. In Proceedings of the 8th International Meshing Roundtable, South Lake

Tao, CA, USA, 1999.
[17] O. Hassan, K.A. Sørensen, K. Morgan, and N. P. Weatherill. A method for time accurate turbulent compressible fluid flow simulation with

moving boundary components employing local remeshing. Int. J. Numer. Meth. Fluids, 53(8):1243–1266, 2007.
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Fig. 7. Test case of the nosing up F117. Isolines on several cutting planes of the mach field at different time steps ( from left to right and up to
down t = 0.49, 0.85, 1.22, 1.47, 2.08, 2.82, 3.31, 3.80, 4.28 and 4.90).
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Fig. 8. Test case of the two F117s: Snapshots of the moving geometries and the mesh (left) and density (right).


